An outbreak of *Gemmamyces picae* in the Ore Mts.

The Silva Tarouca Research Institute, Czech Republic

Karel Černý, Markéta Hrabětová, Ludmila Havrdová, Veronika Strnadová, Daniel Zahradník, Dušan Romportl, Vladimír Zýka

The Ore Mts. and *Picea pungens*

The Ore Mts. (Central Europe)

- Mountaineous plateau was deforested due to SO₂ pollution from brown-coal power plants built at foothills during 2nd half of 20th century.

Picea pungens

- North American species was then used for reforestation of ca 10 000 ha of the plateau due its tolerance to air pollution.

Bud blight

- An unknown but devastating disease was firstly identified in 2009.
A brief history of *G. piceae*

Borthwick 1909
- 1906 – Abercairney (Scotland)
- *Cucurbitaria piceae* (teleomorph stage)
- *(Cucurbitariaceae, Pleosporales)*
- Cucurbitaria bud blight (*Picea pungens*)
 - Naumov 1925
 - *Megaloseptoria mirabilis* (anamorphic)

Ferdinandsen, Jørgensen 1938
- supposed that identical fungus

Casagrande 1969
- new name: *Gemmamyces piceae*

2015: molecular analysis (LSU, SSU)
- *Gemmamyces* is correct

Gemmamyces piceae

(a) (b) (c) (d) (e) (f) (g)
Initial stage of bud blight

Anamorph

Teleomorph
Advanced stage of bud blight

Characteristic change of branching system of dying trees
2009: bud blight widespread in the Ore Mts.
loss of buds about ca 45 % in avg.
2017: loss of buds ca 75 % in avg. many stands dying or death

The cause of the epidemics was revealed, many stands dying or dead, but many important questions still had remained...

- Where was the homeland of the fungus?
- What was the real history of the pathogen in CZ?
- What really happened in the Ore Mts.?
- What is its ecology and disease epidemiology?
- What is the perspective of affected stands?
- What can we do against the pathogen?
G. piceae – alien to Europe?

1906 – Picea pungens / Scotland
Later – next European findings mainly on P. pungens
1946 – 1st. finding on P. abies in its native area (Kujala 1950)

Known hosts: Picea pungens, P. engelmannii (the most susceptible), P. sitchensis, P. glauca, P. schrenkiana, P. asperata, P. abies

• GP in Tianshan
• mountain forests with P. schrenkiana

Desprez-Loustau (2009)
• G. piceae cryptogenic?

Extremely psychrophilic

Place of origin: Asia?

Presence in CZ

Köck (1918)
• NW Bohemia, 1909
• 2nd finding worldwide
• ornamental plantations surrounding the hunting castle Kladská (NW Bohemia)
• pathogen introduced with the host from nurseries

Tubeuf (1919)
• last report in CZ in 20th century

CZ after 2000
• pathogen suddenly widespread
Epidemics onset in the Ore Mts.

Logistic model
- Using known data about disease extent development (2009–2013)
- 29 plots with 25 trees, R-plus
- Epidemics started around 2000

Potential earlier onset of the epidemics was probably blocked by air pollution – high SO$_2$ concentrations probably inhibited germination of conidia till late 1990.

Identification of environmental factors affecting the disease impact

Methodics
- 55 stands with 20 trees covering overall variability of conditions of stands
- Dependent variable: loss of buds (%)
- Explanatory variables (35)
 - silvicultural (State Forests): area, proportion of *P. pungens*, height, canopy, spacing, density of stocking…
 - environmental (FMI, GIS): watercourse, soil type, slope, exposition, TPI, landform, altitude, …
 - climatic (GIS): long-term avg. temperature and precipitation
 - microclimatic (dataloggers THI Minikin, EMS): measuring of temperature and humidity (VII–IX) in stands

R plus (GLM)
- 3 models for 3 space scales (trees, stands, whole mountains)
Example: model 1 (for trees)

<table>
<thead>
<tr>
<th>variable</th>
<th>reg. coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1.985</td>
</tr>
<tr>
<td>relat. height</td>
<td>-1.332***</td>
</tr>
<tr>
<td>competition</td>
<td>2.170***</td>
</tr>
<tr>
<td>canopy</td>
<td>0.378***</td>
</tr>
<tr>
<td>proportion birch</td>
<td>-0.164*</td>
</tr>
<tr>
<td>proportion rowan</td>
<td>-0.182</td>
</tr>
<tr>
<td>site class</td>
<td>0.735***</td>
</tr>
<tr>
<td>open water</td>
<td>20.547***</td>
</tr>
<tr>
<td>orientation E</td>
<td>0.000</td>
</tr>
<tr>
<td>N</td>
<td>-50.398***</td>
</tr>
<tr>
<td>NE</td>
<td>-11.220***</td>
</tr>
<tr>
<td>NW</td>
<td>-16.629***</td>
</tr>
<tr>
<td>S</td>
<td>-6.987**</td>
</tr>
<tr>
<td>SE</td>
<td>3.973</td>
</tr>
<tr>
<td>SW</td>
<td>-3.343</td>
</tr>
<tr>
<td>W</td>
<td>-5.016*</td>
</tr>
<tr>
<td>coef. of determination</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Explanatory variables – summary

Silvicultural
+ competition, canopy, stand height
- relat. height of tree, presence of birch and rowan

Environmental
+ presence of water, valeys and lower slopes, wet and poor soil types
- N and S (open) slopes, upper slopes, rich soils

(Micro)climatic
+ precipitation
- temperature
Map of environmental suitability of the Ore Mts. for *G. piceae*

Summary

G. piceae
- likely alien to Europe; native to *P. schrenkiana* forests in Tianshan?
- adapted to harsh climate of boreal forests (cold and wet summers)
- extremely dangerous for *P. pungens* (and other NA species?)
- the outbreak in Central Europe was probably delayed by air pollution (SO_2)
- poses probably high risk for North American mountaineous or boreal forests