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Introduction 

Concerns about global climate change have high-
lighted the importance of finding efficient ways of 
quantifying terrestrial carbon stocks at regional, con-
tinental, and global scales (Boudreau et al. 2008). In 
this context, remote sensing technologies have gained 
large importance over the last decades in addressing 
these issues, and have been utilized as a reliable sup-
port for ground field inventories. At present, the trend 
is to minimize field data collection procedures by au-
tomatic extraction of parameters from remote sensing 
data. For forestry purposes, LiDAR technology is be-
ing used increasingly due to its ability to provide accu-

rate 3D representations of forest structure throughout 
a geolocated points “cloud” which penetrates the forest 
canopy. 

Airborne LiDAR has been confirmed as the ideal 
technology for obtaining accurate canopy height mod-
els over large forested areas because of its high preci-
sion and its ability to receive ground returns over veg-
etated areas (Vazirabad et al. 2011). LiDAR has been 
shown to accurately estimate LAI and above ground 
biomass even in high-biomass ecosystems where pas-
sive optical and active radar sensors typically fail to do 
so (Levsky et al. 2002). A significant advantage of Li-
DAR is that it can measure not only tree height but also 
crown dimensions, thus improving estimates of forest 
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volume and biomass, from individual trees to regional 
areas (Popescu et al. 2003; Popescu 2007).

Since the mid to late 1980s, the use of LiDAR for 
forestry applications has advanced with technology to 
include a  number of functions, such as forest inven-
tory surveys, estimation of stand heights, crown cover 
density, and ground elevation beneath the forest canopy 
(Tiede et al. 2005). 

Previous studies using LiDAR were conducted to 
determine forest structural characteristics over small 
areas. In this paper, we contribute to the growing evi-
dence that LiDAR can be exploited over large scales 
to provide results that are transferrable into practical 
applications. One such previous example is from New 
Zealand, where LiDAR data was used to estimate forest 
biomass and fulfill the requirements made by the Unit-
ed Nations Framework Convention on Climate Change, 
and New Zealand’s submission under Article 7.1 of the 
Kyoto Protocol (New Zealand Government 2011). 

There are two main approaches for estimating Li-
DAR-based biomass and volume (Bartolot and Wynne 
2005): one is using distributional metrics in conjunction 
with regression equations to predict forest properties, 
and the other is to use computer vision techniques to 
locate and measure the properties of individual trees us-
ing CHMs (canopy height models). Zhao et al. (2009) 
proposed a  scale-invariant prediction model of above 
ground biomass using LiDAR data.

A comprehensive review concerning the use of Li-
DAR for biomass estimation can be found in Vazirabad 
et al. 2011.

In Romania, LiDAR is an emerging technology 
with only limited research conducted to test its vast po-
tential. This article represents the first results concern-
ing LiDAR applications in forestry in Romania, and is 
focused on assessing the feasibility of stand biomass 
evaluation based on biometric measurements from air-
borne laser scanning data in a spruce forest test area.  

Material and methods

Test site. The test site is in Romania, Vâlcea county, in 
the area of Voineasa Forest District, within the Lotru riv-
er valley. The prevailing species are spruce [Picea abies 
(L.) H.  Karst.] and beech (Fagus sylvatica L.), which 
are found in both pure and mixed stands. The area is in 

a mountainous region, covered mostly with pasture and 
forest, water bodies and different types of constructions.

ALS data 

We used airborne LiDAR data collected in 2008– 2009 
by an airborne Riegl LMS-Q560 device connected to 
a precision GPS/IMU system, which allows laser meas-
urements to be corrected in real-time. The data were 
provided in “las” LiDAR data format, using the UTM 
coordinate system, elevation High Above Ellipsoid 
(HAE). The density was 1.6 points (hits) per square me-
ter for each strip. To manage, visualize, process, and 
analyze airborne LiDAR data and imagery, two soft-
ware packages were used: 
–– MARS Explorer – function-limited 30-day trial li-

cense – a commercial application developed by the 
Merrick Company;

–– Fusion – forestry oriented free software for manag-
ing geospatial data, developed and maintained by 
the USDA (United States Department of Agricul-
ture) Forest Service. 

GPS Measured Data 

The coordinates of the plot centers were measured us-
ing a Trimble Pro XH GPS receiver, working in double 
frequency L1/L2 with a Zephyr external antenna and 
a  Trimble Recon PDA dataloger, with Trimble Terra-
sync Professional software installed. 

The plot centers coordinates collected by GPS us-
ing geographic coordinates (Lon/Lat) on the WGS 1984 
ellipsoid were transferred, corrected, and reprojected 
in the UTM coordinate system (the elevation reference 
HAE –  High Above Ellipsoid) and exported in GIS 
format with Trimble GPS Pathfinder Office software 
(Fig.  1). For improved accuracy, a  differential correc-
tion was performed using data from the nearest GPS 
permanent EUREF stations DEVA, BUCU and BACA, 
provided online via the Internet.

FieldMap reference data 

We used FieldMap (forestry professional software and 
equipment for field measurements) to determine ref-
erence data by measuring individual tree parameters. 
Tree position, height, stem diameter and tree crown pro-
jection were measured (Fig. 2). Tree heights were meas-
ured using a Haglöf Vertex IV Hypsometer. To process 
and analyze biometric data we used SPSS software.
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Fig. 1. GPS measured center plots (56A parcel) and the forest 
stand limit

Our main goal was to determine biomass using 
heights obtained via LiDAR data. For this, we had to 
measure field reference data in 21 plots in order to ob-
tain 90% accuracy in volume and biomass estimation. 
All individual trees measured in these plots were spruce 
(P. abies).

The classification of LiDAR point clouds, DSM 
(which in forest areas is identical to the canopy height 

model – CHM), and DTM extraction were processed in 
MARS software. The raw LiDAR data was provided as 
a collection of unclassified points. For DTM extraction 
we classified the last and single returns by applying an 
automatic filter based on a ground distance algorithm. 
Four classes were created: Ground, Small Vegetation, 
Medium Vegetation and High Vegetation. For the DTM 
extraction only the Ground class was considered. For 
the CHM extraction, we considered the first returns, 
both single and multiple echoes.

Fig. 2. FieldMap measured crown projections in plot no 18

Fusion software was used in conjunction with the 
DTM and a subset of LiDAR points to measure the height 
of individual trees inside the plot area. To estimate height 

Fig. 3. Semi automatic tree height measurement in Fusion software
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with Fusion software, an area including only one tree was 
selected and the height was computed as the difference 
between the Z-value of the highest point (local maxima), 
and the Z-value of the ground level (local minima). The 
estimation of tree height is actually the difference be-
tween CHM and DTM for that tree (Fig. 3). 

It was particularly important to ensure that the trees 
measured in the field corresponded accurately with 
those identified in the LiDAR point cloud. This ambi-
guity was resolved via the following operations:
–– clipping the LiDAR data corresponding to the meas-

ured field plots (Fig. 4);

Fig. 4. Digital terrain model and LiDAR data clipped for the 
21 plot areas (FUSION)

Fig. 5. LDV FUSION window: field measured trees, LiDAR 
point cloud, DTM for plot 5619

–– import and visualization of tree field measurements 
with FUSION software (Fig. 5);

–– import and display of the CHM in FUSION soft-
ware. This was done by running the CanopyModel 
command line process from the FUSION LiDAR 
Toolkit (Fig. 6).

Fig. 6. FUSION 3D canopy height model for the plot 5619

Stem volume per plot and per hectare were deter-
mined from the field data, using individual tree stem 
volume calculated by a  formula according to Giurgiu 
(Tab. 1).

	 log v = a0 + a1 log d + a2 log2 d + 	  
	 + a3 log h + a4 log2 h	 (1)

were:
d 	– diameter at breast height in cm,
h 	– tree height in m,
v 	 – tree stem volume in m3.

Tab. 1. Coefficients a0, a1 , a2, a3, a4 established for spruce 
(Giurgiu et al. 2004)

Species/
Coefficient a0 a1 a2 a3 a4

Spruce –4.18161 2.08131 –0.11819 0.70119 0.148181

Biomass was calculated using three methods: two 
of which calculate biomass for each plot, and a  third 
which uses LiDAR-measured heights. All three meth-
ods took into account only trees with DBH > 13 cm.
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A. Biomass using a series of formulas for spruce ac-
cording to Wirth (based on diameter, height and age) for 
branches, dry branches, stem and roots (Tab. 2)
–– Branches: 

lnWb = β0 + β1 lnD + β2 lnH + β3 (lnH)2 

–– Dry branches: 

lnWd = β0 + β1 lnD + β2 lnH + β3 (lnA x lnD)

–– Stem: 	

lnWs = β0 + β1 lnD + β2 (lnD)2 + β3 lnH + 
+ β4 (lnH)2 + β5 lnA

–– Roots: 	

lnWr = β0 + β1 lnD + β2 (lnD)2 + β3 lnA 

where:
Wb 	– branches biomass (kg dry mass tree-1),
Wd 	 – dry branches biomass (kg dry mass tree-1),
Ws 	 – stem biomass (kg dry mass tree-1),
Wr 	 – roots biomass (kg dry mass tree-1),
D 	 – diameter at breast height (cm),
H 	 – height of tree (m),
A 	 – age of tree (years).

B. Giurgiu method for estimating total tree biomass 
for spruce using the following equation:

y = 44.855 – 9.8498x + 0,7929x2 

where:
y 	 – total biomass in kg ha-1,
x 	 – diameter at breast height in cm.

C.  Biomass estimation using LiDAR determined 
heights. This method implies a series of preparatory steps:
a.	 Computation of missing LiDAR heights using the 

regression equation based on all trees for which 
both LiDAR and field heights were measured:

hLiDAR = 0.9393 hfield + 0.5182

b.	 Computation of mean hLiDAR.
c.	 Computation of corrected mean height hcor using the 

following regression equation based on field and 
LiDAR data:

hcor = 1.0067 hLiDAR + 0.8278

d.	 Computation of normal basal area and volume for 
the corrected mean height hcor = hmean, according to 
Giurgiu (Tab. 3):
–– hmean ≤ 22 m

Gn = a1hmean + a2hmean
2 + a3hmean

3 + a4hmean
4

–– hmean >22m

Gn = F + b1(hmean – 22) + b2(hmean – 22)2 + 
+ b3(hmean – 22)3 + b4(hmean – 22)4

–– hmean ≤ 22 m

Vn = a1hmean + a2hmean
2 + a3hmean

3 + a4hmean
4

–– hmean > 22 m

Vn = C + b1(hmean – 22) + b2(hmean – 22)2 + 
+ b3(hmean – 22)3 + b4(hmean – 22)4

where:
Gn 	 – normal basal area for the mean height,
Vn 	 – normal volume for the mean height.

e.	 Computation of total volume and biomass for the 
determined hmean 

Density index = Gn/Gtfield

Vt 	 – Vn x density index,
Vt 	 – total volume (m3),
Stem biomass 	– �Vt x wood volumetric density (kg m-3),
Total biomass 	– �stem biomass / 65% (65% represent the 

percent of the stem biomass from total 
biomass (Giurgiu et al.)).

Tab. 2. Coefficients established for spruce (Wirth et al. 2004)

Compartment β0 lnD (lnD)2  lnH (lnH)2 lnA (lnA × lnD)

Branches –0,64565 2.85424 – –2.98493 0.41798 – –

Dry branches –1.21969 1.49138 – –1.25928 – – 0.18222

Stem –2.83958 2.55203 –0.14991 –0.19172 0.25739 –0.08278 –

Roots –8.35049 4.56828 –0.33006 – – 0.28074 –
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Tab. 3. Coefficients a1, a2, a3, a4 and b1, b2, b3, b4 , F, C 
established for spruce (Giurgiu, Drăghiciu 2004)

hmean Vn

a1 a2 a3 a4

≤ 22 m 1.1147 1.7463 –0.0252 –0.0003

b1 b2 b3 b4 C

> 22 m 31.331 –0.1794 –0.0023 0.00005 531

Gn

a1 a2 a3 a4

≤ 22 m 3.768738 –0.08049 0.00316 –0.000094

b1 b2 b3 b4 F

> 22 m 1.483433 –0.06672 0.002892 –0.000051 55.6

Results 

Checking the statistical coverage probability

Field measurements were summarized and were statis-
tical indicators such as sample mean, standard devia-
tion, and coefficient of variation were calculated for all 
21 plots (Tab. 4). 

Tab. 4. Statistical indicators of the field data

No  
of plots

Characteristic 
considered

Sample 
mean

Standard 
deviation

Coefficient 
of variation

21
Total basal 
area (m2) 3.30 0.67 20

Volume (m3) 36.35 9.15 25

The low value of the volume coefficient of vari-
ation (25%) signifies that all 21 plots were relatively 
similar in volume and spread uniformly across the test 
site, each being highly representative of the stand as 
a whole.

The aim tolerance was ±10% at a statistical cover-
age probability of 90%. The percentage of inventory 
was less than 10% (21 circular plots areas of 500 m2 
each), and the error of representativeness (p) was cal-
culated with the following simplified formula:

	 p t s
n

= × %

where: 
t 	 – �Student coefficient at 20 degrees of freedom 

(t = 1.725), 
s% 	– coefficient of volume variation (25%),
n 	 – number of plots (21).

The representativeness error calculated with the 
above formula was 9.4% (within the 10% tolerance), 
which means the number of plots areas chosen for par-
cel 56A was sufficiently adequate to obtain 90% accu-
racy in volume and biomass estimation.

Computing biomass from field data 

Firstly, we compared the two terrestrial methods using 
a  paired samples t-test. The significance of the t-test 
showed that there were no significant differences be-
tween them (t(20) = 0.652, p = 0.522) (Tab. 5).

Correlation between heights measured  
in the field and those measured by LiDAR 

Heights determined via LiDAR data were compared 
with those measured in the field and interpreted sta-
tistically to determine the correlation coefficient be-
tween the two sets of values and the significance of the 
coefficient of variation was tested (Tab. 6). The results 
show a strong linear correlation between the two sets 
of height measurements across each of the sample ar-
eas (Fig. 7).
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Fig. 7. Correlation between height measured in the field and 
by LiDAR

From the table with fusioned field-LiDAR biomet-
ric measurements we derived the correlation between 
height measured by LiDAR (hiLiDAR) and real heights (hi): 

hi =1.0067 hiLiDAR + 0.8278
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Tab. 6. Table with values of correlation coefficients, 
transformed correlation coefficients (z), and u statistics for 
each of the 21 plots 

IDPlot
Number  
of trees 

measured

Correlation 
coefficient 

(r)
Z U

1 2 3 4 5

561 24 0.812 1.133 5.191

562 22 0.987 2.523 10.999

1 2 3 4 5

563 41 0.976 2.203 13.582

564 34 0.973 2.152 11.983

565 29 0.990 2.656 13.545

566 20 0.984 2.411 9.943

567 35 0.975 2.180 12.335

568 40 0.913 1.544 9.390

569 32 0.968 2.063 11.110

Tab. 5. Comparison between two terrestrial methods (Giurgiu–Wirth) that estimate biomass 

Plot
ID

Method I - Giurgiu Method II – Wirth – Biomass kg ha-1

Basal area
(G)

m2ha-1

Volume
(v)

m3ha-1

Biomass
(kg ha-1)

Branches
(kg ha-1)

Dry branches
(kg ha-1)

Stem
(kg ha-1)

Roots
(kg ha-1)

Total
(kg ha-1)

561 72.82 738.13 500,271.58 56,726.11 14,207.71 285,980.21 101,900.09 458,814.11

562 60.62 713.21 435,199.57 50,359.17 10,488.35 287,237.29 87,126.62 435,211.42

563 68.42 703.69 462,403.13 52,442.04 13,602.13 273,663.47 94,070.93 433,778.56

564 80.96 844.16 528,953.91 56,585.06 15,154.75 336,084.40 110,130.71 517,954.91

565 68.59 740.81 478,685.53 54,184.91 13,361.77 291,393.28 97,827.52 456,767.47

566 53.05 574.92 353,544.06 38,274.01 9,195.39 229,622.50 72,575.11 349,667.01

567 107.86 1,311.03 751,396.42 82,119.94 17,124.86 535,292.07 152,496.01 787,032.89

568 72.17 752.03 457,633.87 46,852.13 14,664.72 303,333.21 97,731.47 462,581.54

569 50.60 451.37 317,838.42 68,053.65 19,637.10 178,537.26 65,926.49 332,154.50

5610 57.88 503.95 343,639.03 36,139.62 12,286.95 194,922.67 73,167.86 316,517.09

5611 70.05 818.07 507,026.18 59,476.83 12,592.39 324,050.48 101,227.56 497,347.26

5612 67.37 757.95 450,293.27 47,552.46 12,001.84 306,146.30 93,478.55 459,179.14

5613 62.60 597.86 392,990.60 40,620.28 12,488.05 234,338.36 83,344.41 370,791.10

5614 73.62 819.44 484,476.60 51,446.28 13,192.24 332,061.67 100,953.26 497,653.46

5615 76.20 861.10 505,095.70 54,047.03 14,094.27 349,839.60 105,305.08 523,285.97

5616 48.42 530.75 337,508.53 36,480.15 8,760.02 209,445.27 69,358.35 324,043.78

5617 54.44 621.76 359,301.36 36,451.51 9,397.78 253,619.46 75,519.02 374,987.76

5618 56.67 609.34 386,290.98 40,575.92 10,440.65 241,493.82 80,473.44 372,983.83

5619 73.50 871.11 504,345.99 53,374.50 12,661.51 354,797.74 104,386.74 525,220.49

5620 50.85 578.00 378,525.84 45,698.29 9,315.14 223,454.74 74,177.85 352,646.02

5621 60.64 689.71 397,494.86 42,961.96 11,699.25 284,198.75 83,134.05 421,994.01

MEAN 66.06 718.49 444,424.54 50,020.09 12,684.14 287,119.64 91,633.86 441,457.73

% – – 11.30 2.90 65.00 20.80 100.00
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1 2 3 4 5

5610 47 0.932 1.677 11.122

5611 24 0.976 2.207 10.116

5612 29 0.953 1.866 9.514

5613 45 0.957 1.909 12.371

5614 37 0.956 1.899 11.075

5615 32 0.904 1.496 8.057

5616 23 0.984 2.419 10.818

5617 27 0.986 2.467 12.086

5618 27 0.943 1.762 8.633

5619 32 0.966 2.035 10.958

5620 12 0.978 2.246 6.737

5621 29 0.949 1.818 9.270

Frequency by diameter class

In order to calculate the mean diameter, the distribution 
of field-measured diameters was determined and com-
pared to the normal distribution. Small diameters were 
overrepresented compared to the normal, and so diam-
eters lower than 13 cm were excluded from volume and 
biomass determination (Fig. 8). These trees represented 
about 1% of total biomass.

Computing mean height 

The first step was to compute the missing adjusted Li-
DAR heights according to the inverse function:

hLiDAR = 0.9393 hfield + 0.5182

The second step was to determine the mean ad-
justed LiDAR height corresponding to the mean diam-
eter class. The mean diameter of 29.5 cm belongs to the 
28– 30 diameter class and the mean adjusted LiDAR 
height is 22.81 m.

Finally, the mean height was calculated from the 
mean adjusted LiDAR height by the direct function:

hmean = 1.0067 hLiDAR + 0.8278 = 23.79 m

Computing normal basal area, total volume  
and biomass for the determined mean height

For the third method, the total biomass was derived 
from stem biomass, which was assumed to be 65% of 
total biomass (Giurgiu et al. 2004), which is consist-
ent with the tree stem biomass computed by the Wirth 
equation (Tab. 7).

To compare the results of the third biomass estimat-
ing method with the first two classic ones, a one-sample 
t-test was used. If, when calculating the biomass, we 
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use the general density of 372 kg m-3 (Giurgiu et al. 
2004), between the first two calculated biomasses and 
the third, there are significant differences (t(20) = 2.976, 
p = 0.007; t(20) = 2.605, p = 0.017). This result seemed 
odd, because when comparing the volumes calculated 
based on field data reported in ha with the total volume 
determined by the third method, no significant differ-
ences were recorded (t(20) = 1.283, p = 0.214). Based 
on the stem biomass computed using the Wirth formula 
(bst) and the volumes of each tree (vst), we determined 
a local regression equation for estimating stem biomass 
as a function of volume:

bSt=392.797 vst+ 5.883

When applying this equation to the calculation of 
stem biomass in the third method, the resulting total 
biomass is not significantly different from the biomass-
es obtained using the first two methods (t(20) = 1.958, 
p = 0.06; t(20) = 1.669, p = 0.111).

Discussion

The plots were typical of high density spruce stands 
from mountainous areas, which are not straightforward 
to analyze. From the total of 1142 trees across 21 sam-
ple areas, height could be measured for 641 individu-
als (56% of total). However, the trees represented in the 
LiDAR data accounted for 90% of the biomass. There-
fore it can be concluded that preliminary LiDAR data 
provides a good estimate of biomass. Although a little 
over 50% of the total number of trees were identifiable 
via LiDAR, these were the dominant and co-dominant 
individuals, representing most of the stand biomass. In 
fact, the 10% of the biomass not identifiable on LiDAR 
data represents under-developped and dominated trees 
from the lower ceiling. These results are comparable to 
those obtained in other research centers.

The method of estimating biomass using only height 
measurements obtained via LiDAR compares favora-
bly with the widely accepted existing biomass equa-
tions used in Europe and Romania. Good correlations 
between LiDAR measured heights and field measured 
heights were obtained from existing data, and biomass 
estimation was also accurate. Additionally it was pos-
sible to derive a correlation between mean height and 
dominant height (measured on LiDAR), or between the 
biomass of visible trees and total biomass. Usually the 
tree and stand heights measured via LiDAR are under-
estimates, so good field data are important in obtaining 
good correlation equations.

The analysis presented above was applied to point 
clouds of low density, and so the LiDAR data parame-
ters are another factor affecting the accuracy of results. 
In this respect, a  larger number of LiDAR crossings 
over the same area, or the use of high frequency scan-
ners could provide higher accuracy.

This method still requires field data to obtain a good 
estimation of the mean height, as only dominant trees 
are visible in LiDAR data. Using LiDAR we are able 
to measure only the top stand layer, so the method de-
scribed is applicable only to the one-layer stands. Addi-
tionally, an adequate number of LiDAR observations in 
different stand situations (age, density, productivity) are 
required. Local biomass equations and wood volumetric 
density should be developed in order to use this method.

Conclusions

This paper represents an individual tree-based ap-
proach, developed as a method to evaluate the dry bio-
mass of spruce forests by combining airborne LiDAR 
sampling and ground plots. The preliminary results 
confirmed previous research results from other coun-
tries that LiDAR data has a strong potential to provide 

Tab. 7. Biomass determination using mean height from LiDAR data

Vn
(m3 ha-1)

Gn
(m2 ha-1)

G
(m2 ha-1)

Density 
index
G/Gn

Vt
(m3 ha-1)

Volumetric density  
for 366 kg m-3

Volumetric density  
for 399 kg m-3

Stem biomass
(kg ha-1)

Total biomass
(kg ha-1)

Stem biomass
(kg ha-1)

Total biomass
(kg ha-1)

586.65 58.06 66.06 1.14 667.47 244,293.80 375,836.62 266,320.29 409,723.53
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precise information on biomass, and can offer a good 
estimation using only LiDAR measured heights. Fur-
ther studies will aim to further develop the method, in 
order to use less field data for biomass estimation and 
to include a crown diameter/DBH correlation. Another 
topic of interest is the automatic identification of trees, 
and the extraction of tree heights extending across all of 
the forest stand area. 
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